338 research outputs found

    Un canvi climàtic fa 20.000 anys va invertir la circulació a l'Atlàntic

    Get PDF
    Investigadors de la UAB han publicat a Nature un estudi que mostra com van canviar els corrents oceànics a l'Atlàntic a causa del canvi climàtic en el passat. La recerca demostra que hi va haver un període en què es va invertir el règim de circulació de les aigües profundes. Els resultats són rellevants per al futur proper, ja que s'espera que es produeixin canvis similars en el marc de l'escalfament del clima al llarg dels propers cent anys.Investigadores de la UAB han publicado en Nature un estudio que muestra cómo cambiaron las corrientes marinas en el Atlántico a causa del cambio climático en el pasado. La investigación demuestra que hubo un periodo en que se invirtió el régimen de circulación de las aguas profundas. Los resultados son relevantes para el futuro próximo, ya que se espera que se produzcan cambios similares en el marco del calentamiento del clima a lo largo de los próximos cien años.UAB researchers have offered details in an article published in Nature on a study which shows how ocean currents in the Atlantic were affected by climate change in the past. The study shows that there was a period when the flow of deep waters in the Atlantic was reversed. The results are relevant for the near future since similar changes are expected to occur in the course of climate warming over the next 100 years

    Large sediment waves over the Gulf of Roses upper continental slope (NW Mediterranean)

    Get PDF
    Large sediment waves have been observed over the Gulf of Roses (GoR) continental slope (NW Mediterranean), developed between similar to 200 and similar to 400 m water depth. Geometric parameters computed from the acquired swath bathymetry revealed mean wave lengths of similar to 2000 m, and maximum wave heights of similar to 60 m. Single-channel reflection seismic profiles provided information on the sediment wave internal structure and the Quaternary stratigraphic architecture of the GoR outer shelf and slope. Seven main seismic units could be identified, with continuous development of sediment waves over the outer continental shelf and upper slope, showing differences in wave height and length. The seismic units are differentiated by erosional surfaces that can be followed from the outer shelf down the slope, and which have been correlated with Pleistocene eustatic oscillations. Sediment cores were collected over the sediment wave crests and troughs, and grain size distribution and sediment accumulation rates were analysed. Results show a dominant fraction of fine sediments, allowing classifying the observed bedforms as mud waves. Calculated sediment accumulation rates ranged between 0.08 and 0.18 cm/y, with no clear sedimentation pattern (e.g. differential sediment deposition rates) observed between wave crests and troughs. Nevertheless, the presence of thick surface mixed layers and the increase of the sand fraction in the upper sections of the cores indicate that the surface sediments are affected by bottom trawling activities, since the area is highly impacted by this human activity. The sediment waves observed over the GoR slope are most likely to be formed by bottom currents generated by overflows of dense water originated in the Gulf of Lions shelf, which cascade downslope in an oblique angle with respect the main bathymetric contours. This study offers new insights on the role of dense shelf water cascading processes and associated off-shelf sediment transport reshaping the morphology of the open-slope regions

    Quantifying 210Po/210Pb Disequilibrium in Seawater: A Comparison of Two Precipitation Methods With Differing Results

    Get PDF
    The disequilibrium between lead-210 (210Pb) and polonium-210 (210Po) is increasingly used in oceanography to quantify particulate organic carbon (POC) export from the upper ocean. This proxy is based on the deficits of 210Po typically observed in the upper water column due to the preferential removal of 210Po relative to 210Pb by sinking particles. Yet, a number of studies have reported unexpected large 210Po deficits in the deep ocean indicating scavenging of 210Po despite its radioactive mean life of ∼ 200 days. Two precipitation methods, Fe(OH)3 and Co-APDC, are typically used to concentrate Pb and Po from seawater samples, and deep 210Po deficits raise the question whether this feature is biogeochemically consistent or there is a methodological issue. Here, we present a compilation of 210Pb and 210Po studies that suggests that 210Po deficits at depths >300 m are more often observed in studies where Fe(OH)3 is used to precipitate Pb and Po from seawater, than in those using Co-APDC (in 68 versus 33% of the profiles analyzed for each method, respectively). In order to test whether 210Po/210Pb disequilibrium can be partly related to a methodological artifact, we directly compared the total activities of 210Pb and 210Po in four duplicate ocean depth-profiles determined by using Fe(OH)3 and Co-APDC on unfiltered seawater samples. While both methods produced the same 210Pb activities, results from the Co-APDC method showed equilibrium between 210Pb and 210Po below 100 m, whereas the Fe(OH)3 method resulted in activities of 210Po significantly lower than 210Pb throughout the entire water column. These results show that 210Po deficits in deep waters, but also in the upper ocean, may be greater when calculated using a commonly used Fe(OH)3 protocol. This finding has potential implications for the use of the 210Po/210Pb pair as a tracer of particle export in the oceans because 210Po (and thus POC) fluxes calculated using Fe(OH)3 on unfiltered seawater samples may be overestimated. Recommendations for future research are provided based on the possible reasons for the discrepancy in 210Po activities between both analytical methods

    Bottom-trawling along submarine canyons impacts deep sedimentary regimes

    Get PDF
    Unidad de excelencia María de Maeztu MdM-2015-0552Many studies highlight that fish trawling activities cause seafloor erosion, but the assessment of the remobilization of surface sediments and its relocation is still not well documented. These impacts were examined along the flanks and axes of three headless submarine canyons incised on the Barcelona continental margin, where trawling fleets have been operating for decades. Trawled grounds along canyon flanks presented eroded and highly reworked surface sediments resulting from the passage of heavy trawling gear. Sedimentation rates on the upper canyon axes tripled and quadrupled its natural (i.e. pre-industrialization) values after a substantial increase in total horsepower of the operating trawling fleets between 1960s and 1970s. These impacts affected the upper canyon reaches next to fishing grounds, where sediment resuspended by trawling can be transported towards the canyon axes. This study highlights that bottom trawling has the capacity to alter natural sedimentary environments by promoting sediment-starved canyon flanks, and by enhancing sedimentation rates along the contiguous axes, independently of canyons' morphology. Considering the global mechanisation and offshore expansion of bottom trawling fisheries since the mid-20th century, these sedimentary alterations may occur in many trawled canyons worldwide, with further ecological impacts on the trophic status of these non-resilient benthic communities

    Evidència de forçament climàtic natural i antròpic durant l'últim mil·lenni

    Get PDF
    Unidad de excelencia María de Maeztu MdM-2015-0552Un equip d'investigació multidisciplinar ha aconseguit un avanç important en el coneixement de les respostes terrestres i oceàniques a la variabilitat climàtica durant l'últim mil·lenni, incloent l'era industrial. Dos registres marins recuperats a la conca de la mar d'Alboran i analitzats a molt alta resolució han permès la reconstrucció de les condicions climàtiques i oceanogràfiques, així com la identificació d'influència antròpica a la regió més occidental de la Mediterrània durant aquest període de temps.A multidisciplinary international team has advanced in the understanding of the terrestrial and ocean responses to climate variability in the western Mediterranean during the past millennium including the industrial era. Two high-resolution deep-sea records from the Alboran Sea basin enabled the reconstruction of climate and oceanographic conditions as well as the identification of human fingerprints during this period

    Contrasting particle fluxes and composition in a submarine canyon affected by natural sediment transport events and bottom trawling

    Get PDF
    Unidad de excelencia María de Maeztu CEX2019-000940-MSubmarine canyons are important conduits of sediment and organic matter to deep-sea environments, mainly during high-energy natural events such as storms, river floods, or dense shelf water cascading, but also due to human activities such as bottom trawling. The contributions of natural and trawling-induced sediment and organic matter inputs into Palamós Canyon (NW Mediterranean) were assessed from three instrumented moorings deployed in the axis and northern flank of the canyon covering the trawling closure (February) and the trawling season (March-December) of 2017. During the trawling closure, large sediment fluxes with high contents of labile marine organic matter content were registered in the canyon axis, associated to storm resuspension on the shelf that coincided with dense shelf water cascading and high surface water productivity. Although no major natural sediment transport events occurred during the following spring and summer months, near-daily trawling-induced sediment gravity flows were recordedin the northern flank mooring, placed directly below a fishing ground, which sometimes reached the canyon axis. Compositionally, the organic matter transferred by trawling resuspension was impoverished in the most labile biomarkers (fatty acids, amino acids, and dicarboxylic acids) and had a high degree of degradation, which was similar to surficial sediment from the adjacent fishing ground. Trawling resuspended particles masked the transfer of organic matter enriched in labile biomarkers that naturally occur during the quiescent summer months. Overall, bottom trawling enhances the magnitude of particle fluxes while modifying its organic carbon composition, increasing the re-exposure and transfer of degraded organic carbon and potentially affecting benthic communities that rely on the arrival of fresh organic matter

    Organic matter contents and degradation in a highly trawled area during fresh particle inputs (Gulf of Castellammare, southwestern Mediterranean)

    Get PDF
    Bottom trawling in the deep sea is one of the main drivers of sediment resuspension, eroding the seafloor and altering the content and composition of sedimentary organic matter (OM). The physical and biogeochemical impacts of bottom trawling were studied on the continental slope of the Gulf of Castellammare, Sicily (southwestern Mediterranean), through the analysis of two triplicate sediment cores collected at trawled and untrawled sites (∼550 m water depth) during the summer of 2016. Geochemical and sedimentological parameters (excess 210Pb, excess 234Th, 137Cs, dry bulk density, and grain size), elemental (organic carbon and nitrogen) and biochemical composition of sedimentary OM (proteins, carbohydrates, lipids), as well as its freshness (phytopigments) and degradation rates were determined in both coring locations. The untrawled site had a sedimentation rate of 0.15 cm yr−1 and presented a 6 cm thick surface mixed layer that contained siltier sediment with low excess 210Pb concentrations, possibly resulting from the resuspension, posterior advection, and eventual deposition of coarser and older sediment from adjacent trawling grounds. In contrast, the trawled site was eroded and presented compacted century-old sediment highly depleted in OM components, which were between 20 % and 60 % lower than those in the untrawled site. However, the upper 2 cm of the trawled site consisted of recently accumulated sediments enriched in excess 234Th, excess 210Pb, and phytopigments, while OM contents were similar to those from the untrawled core. This fresh sediment supported protein turnover rates of 0.025 d−1, which doubled those quantified in surface sediments of the untrawled site. The enhancement of remineralization rates in surface sediment of the trawled site was associated with the arrival of fresh particles on a chronically trawled deep-sea region that is generally deprived of OM. We conclude that the detrimental effects of bottom trawling can be temporarily and partially abated by the arrival of fresh and nutritionally rich OM, which stimulate the response of benthic communities. However, these ephemeral deposits are likely to be swiftly eroded due to the high trawling frequency over fishing grounds, highlighting the importance of establishing science-based management strategies to mitigate the impacts of bottom trawling

    Sampling Device-Dependence of Prokaryotic Community Structure on Marine Particles: Higher Diversity Recovered by in situ Pumps Than by Oceanographic Bottles

    Get PDF
    10 pages, 3 figures, 2 tables, supplementary material https://www.frontiersin.org/articles/10.3389/fmicb.2020.01645/full#supplementary-material.-- Data Availability Statement. The raw sequence data have been deposited in the Figshare data repository, together with the non-rarefied OTU table, the taxonomy table and the environmental data used in this study, 10.6084/m9.figshare.12333107Microbes associated with sinking marine particles play key roles in carbon sequestration in the ocean. The sampling of particle-attached microorganisms is often done with sediment traps or by filtration of water collected with oceanographic bottles, both involving a certain time lapse between collection and processing of samples that may result in changes in particle-attached microbial communities. Conversely, in situ water filtration through submersible pumps allows a faster storage of sampled particles, but it has rarely been used to study the associated microbial communities and has never been compared to other particle-sampling methods in terms of the recovery of particle microbial diversity. Here we compared the prokaryotic communities attached to small (1–53 μm) and large (>53 μm) particles collected from the mesopelagic zone (100–300 m) of two Antarctic polynyas using in situ pumps (ISP) and oceanographic bottles (BTL). Each sampling method retrieved largely different particle-attached communities, suggesting that they capture different kinds of particles. These device-driven differences were greater for large particles than for small particles. Overall, the ISP recovered 1.5- to 3-fold more particle-attached bacterial taxa than the BTL, and different taxonomic groups were preferentially recovered by each method. In particular, typical particle-attached groups such as Planctomycetes and Deltaproteobacteria recovered with ISP were nearly absent from BTL samples. Our results suggest that the method used to sample marine particles has a strong influence in our view of their associated microbial communitiesVP received funding from Edith Cowan University (G1003456) and from the School of Science at Edith Cowan University (G1003362) to support this work. CR-G and JG were supported by the grants CTM2015-70340-R and RTI2018-101025-B-I00 of the Spanish Ministry of Science, Innovation and Universities and by the Generalitat de Catalunya Consolidated Research Group 2017SGR/1568. PM acknowledges the support of the Generalitat de Catalunya (MERS 2017 SGR – 1588)With the funding support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S), of the Spanish Research Agency (AEI)Peer reviewe

    Impact of particle flux on the vertical distribution and diversity of size-fractionated prokaryotic communities in two East Antarctic polynyas

    Get PDF
    Antarctic polynyas are highly productive open water areas surrounded by ice where extensive phytoplankton blooms occur, but little is known about how these surface blooms influence carbon fluxes and prokaryotic communities from deeper waters. By sequencing the 16S rRNA gene, we explored the vertical connectivity of the prokaryotic assemblages associated with particles of three different sizes in two polynyas with different surface productivity, and we linked it to the magnitude of the particle export fluxes measured using thorium-234 (234Th) as particle tracer. Between the sunlit and the mesopelagic layers (700 m depth), we observed compositional changes in the prokaryotic communities associated with the three size-fractions, which were mostly dominated by Flavobacteriia, Alphaproteobacteria, and Gammaproteobacteria. Interestingly, the vertical differences between bacterial communities attached to the largest particles decreased with increasing 234Th export fluxes, indicating a more intense downward transport of surface prokaryotes in the most productive polynya. This was accompanied by a higher proportion of surface prokaryotic taxa detected in deep particle-attached microbial communities in the station with the highest 234Th export flux. Our results support recent studies evidencing links between surface productivity and deep prokaryotic communities and provide the first evidence of sinking particles acting as vectors of microbial diversity to depth in Antarctic polynyas, highlighting the direct influence of particle export in shaping the prokaryotic communities of mesopelagic waters

    Evidence of large increases in sedimentation rates due to fish trawling in submarine canyons of the Gulf of Palermo (SW Mediterranean)

    Get PDF
    Bottom trawling in submarine canyons can affect their natural sedimentation rates, but studies addressing this issue are still scarce. In the Gulf of Palermo (SW Mediterranean), bottom trawling occurs on the slope around Oreto, Arenella and Eleuterio canyons. Analyses of excess 210Pb concentrations and grain size fractions in sediment cores from their canyon axes revealed that sedimentation rates and silt contents increased in all canyons in the 1980s, due to the expansion of more powerful trawlers ( \u3e 500 HP) to deeper fishing grounds. In Eleuterio and Arenella canyons, sedimentation rates increased by an order of magnitude (0.1-1.4 cm·yr-1), whereas they increased less (0.1-0.7 cm·yr-1) in Oreto Canyon, since the enhanced trawling-derived sediment fluxes into this canyon are affected by sediment resuspension from trawling along its axis. Considering the global expansion of bottom trawling, we anticipate similar alterations in other trawled canyons, with ecological consequences that should be addressed by management strategies
    corecore